Research Onder

Main content

From engines to "smart" buildings and even the human body, research in dynamics and control is crucial to the efficient monitoring, control and design of complex systems. Building on first principles in mathematics and physics, we bring a model-based approach to a wide range of environmental, commercial, social, and biomedical design challenges.

Control-oriented systems modeling and dynamic optimization and feedback control design are our main areas of research. One of our primary objectives is to combine application relevance with scientific depth, and to bridge the gap between system theory and engineering.

Our research is focused on three core areas: model-based control of energy conversion systems, building systems and medical devices.
The majority of our doctoral students are working on engine and automotive systems. Topics in this area span from active control of the combustion process over control-oriented modeling of exhaust aftertreatment systems, to energy management for hybrid powertrains. We also pursue the development of new engine systems, such as the pneumatic hybrid engine or the high-efficiency compressed natural gas (CNG) diesel pilot engine.

Following the first successful applications of these tools to building systems, we went on to accomplish several interesting projects in this area. Topics ranged from data-mining for efficient solar-system design and the integration of smart-grid systems, to energy management for autarkic buildings.

Our research on biomedical systems started with a project on the modeling of intracranial and cerebrospinal fluid (CSF) dynamics. A follow-up project called “SmartShunt – The Hydrocephalus Project” was aimed at conducting basic research necessary for the subsequent development of a smart CSF shunt for the treatment of normal pressure hydrocephalus. We extended our engagement with biomedical research with a project aimed at the mechanical support of human blood circulation. With this project, we focused on new control strategies for ventricular assist devices (VADs) and their interaction with the human heart, in collaboration with the University Hospitals of Zurich and Berne.


Page URL:
© 2017 Eidgenössische Technische Hochschule Zürich