Institute for Dynamic Systems and Control

Raffaello D'Andrea: Control of Distributed, Autonomous Systems

Interested Students

Current ETH students interested in a Bachelor Thesis, Master Thesis or Semester Project, click here.

Non-ETH students interested in a project or internship, click here.

Students interested in applying to the Master's Program, click here. (You may review our topics and make inquiries to the project supervisor directly, but note: you must be admitted to the DMAVT Masters program before you can apply to do a thesis.)

Prospective PhD and Post-Doctoral Researchers, click here.

Flying Machine Arena


The Flying Machine Arena is a research-driven airspace where flying vehicles teach themselves, and each other, how to fly.

Balancing Cube


The  Balancing Cube uses distributed estimation and control to balance on any one of its edges or corners.

Distributed Flight Array


The Distributed Flight Array is made up of modular flying vehicles that are capable of assembling, coordinating, and taking flight.

Interconnected Systems


Mathematical abstraction of an interconnected circular system.


Mathematical abstraction of an interconnected torus system.

Intelligent Warehouse


Kiva System's "Intelligent" warehouse, where fleets of autonomous mobile robots use distributed intelligence to efficiently manage inventory.

We are on the threshold of being able to place sensors everywhere. This has been precipitated in part by the continued rapid advances in sensor technology, which will allow us to embed sensors ranging from the nano-scale to the macro-scale on almost any physical device, at an economically viable cost.

Fortunately, computing and communications technology have been keeping pace with sensor technology, and all the ingredients are there for major breakthroughs in the near future in how we interface to, and control, our environment.

Serious challenges, however, must be overcome.

One of the most significant of these is the present difficulty in making appropriate decisions based on distributed information across a distributed network. To put this in context, it is well known that two simple dynamic systems can exhibit comparatively com­plex behavior when interconnected; the present challenge is to effectively design and control systems with many interconnected components.


Part of our research efforts are aimed at developing new tools for designing and controlling systems such as these. The emphasis is on tools for systems governed by differential and difference equations, both linear and nonlinear, with a large number of components, and interconnected through networks of structured connectivity. We seek to exploit the connectivity aspect of the problem as much as possible. Examples are varied and include regular interconnection structures for systems defined on lattices, and sparse structures for systems with limited connectivity such as vehicle platoons, ''smart'' materials with embedded actuation, aircraft flying in formations, and power distribution systems. Semi-definite programming algorithms can be brought to bear on these problems, resulting in computationally tractable algorithms for system analysis and control design. Other tools include Optimal Control to create motion primitives, Adaptive Control to improve system performance over time and to cope with changing conditions, Mixed Integer-Linear Programming to design cooperative strategies, and Distributed Estimation to build models of the environment from multiple, error-prone sources.


The underlying architecture of these systems is crucial to their success. To be effective, they must be modular, easy to adapt, and allow a large number of individuals to concurrently develop them. This is why, from a pedagogical perspective, we have adopted a multi-disciplinary team-based approach for many of our projects: individuals learn how to create modular subsystems that can easily interface with the subsystems created by other members of their team, and in the process acquire a solid understand­ing of feedback, dynamics and control. 


This kind of ‘building block’ approach – where each self-contained subsystem can be easily put to use by non-experts – is crucial to effective systems engineering, where individuals across many fields must collaborate, where manufacturability and maintainability are key, and where prediction can greatly simplify the interface between the robots and the high-level algorithms that ultimately control them.


In today’s world, engineering, science, and mathematics are essentially utilitarian, and research in these areas is expected to have direct societal relevance. Unfortunately, «utilitarian» often means‚ «for the benefit of consumerism», and narrow metrics are typically used to gauge societal relevance. 


We have an incredible opportunity to push the boundary of what is possible with control algorithms in the broadest sense when we remove the purpose-driven objectives typical to engineering from our research agenda. Novel ideas are often discovered in an unrestrained environment, and to encourage ‘out-of-the-box thinking’, we bring creativity to our research by building dynamic art installations for public display.


Our efforts are geared towards using motion design to explore the interface between mathematics, physics, engineering, and art. One of our research aims is to augment model-based control design with learning and adaptation to provide a flexible methodology for designing high-performance, robust systems. In the process, students are exposed to Systems Engineering, with an emphasis on system analysis, design, and integration. They learn skills such as requirements-driven design, manufacturability, maintainability, modeling and simulation of dynamic systems, and acquire an understanding of the interplay between system design, control design, and simulation.


- Prof. Raffaello D'Andrea


Wichtiger Hinweis:
Diese Website wird in älteren Versionen von Netscape ohne graphische Elemente dargestellt. Die Funktionalität der Website ist aber trotzdem gewährleistet. Wenn Sie diese Website regelmässig benutzen, empfehlen wir Ihnen, auf Ihrem Computer einen aktuellen Browser zu installieren. Weitere Informationen finden Sie auf
folgender Seite.

Important Note:
The content in this site is accessible to any browser or Internet device, however, some graphics will display correctly only in the newer versions of Netscape. To get the most out of our site we suggest you upgrade to a newer browser.
More information

© 2015 ETH Zurich | Imprint | Disclaimer | 17 December 2012